Skip to main content

POLIS

  • Home
  • About
    • Annual report
  • People
    • Director
    • Management committee
    • Staff
    • Adjuncts
    • Visitors
    • Current HDR students
    • Scientific Advisory Board
  • Events
    • CSRM Seminar series
    • Citizen Social series
    • Conferences & workshops
      • Past conferences & workshops
  • News
    • In the media
  • ASPA
    • 2025 Australian Social Policy HDR Conference
    • Australian Journal of Social issues
    • Australian Social Policy Conference
    • Contact us
  • WAPOR
  • Education & training
    • POLIS Courses on offer
    • Undergraduate programs
    • Graduate programs
    • Honours
    • Higher degree by research
    • Executive courses
  • Programs & research
    • Australian Data Archive
    • Criminology
    • Centre for Gambling Research
      • Current projects
      • Past projects & outcomes
      • Media & Resources
    • Research Methods
    • PolicyMod
    • Social Policy
    • Surveys
      • ANUPoll
        • Methodologya
        • Contact ANUpoll
    • Evaluations
    • Transnational Research Institute on Corruption
      • TRIC Award for Anti-Corruption Research
      • The Corruption Agenda
      • Anti-corruption conferences and forums
      • Research
      • Corruption Studies
      • Resources
      • Contact us
    • Research projects
      • Manning cost-benefit tool
      • Routledge Wellbeing Handbook
      • SOAR
      • QRN
      • NT Gambling project
      • FaCtS Study
      • PELab
      • Evaluation of Narragunnawali
      • OxCGRT Australian Subnational dataset
      • Post Separation Parenting Apps
  • Publications
    • Working papers
    • Methods research papers
    • COVID-19 publications
    • Other publications
  • Contact us

Related Sites

  • ANU College of Arts & Social Sciences
  • Research School of Social Sciences
  • Australian National Internships Program
  • ANU Jobs

Administrator

Breadcrumb

HomePublicationsBayesian Forecasting Using Spatiotemporal Models With Applications To Ozone Concentration Levels In The Eastern United States
Bayesian forecasting using spatiotemporal models with applications to ozone concentration levels in the Eastern United States
Author/editor: Sahu, SK, Bakar, KS & Awang, N.
Year published: 2015

Abstract

Bayesian forecasting in time and interpolation in space is a challenging task due to the complex nature of spatio-temporal dependencies that need to be modeled for better understanding and description of the underlying processes. The problem exacerbates further when the geographical study region, such as the one in the Eastern United States considered in this chapter, is vast and the training data set for forecasting, and modelling, is rich in both space and time. This chapter develops forecasting methods for three recently This is a Book Title Name of the Author/Editor °c XXXX John Wiley & Sons, Ltd 2 Bayesian Forecasting Using Spatio-temporal Models with Applications to Ozone Concentration Levels in the Eastern United States proposed hierarchical Bayesian models for spatio-temporal data sets. The chapter also develops Markov chain Monte Carlo based computation methods for estimating a number of relevant forecast calibration measures that facilitates rigorous comparisons of the Bayesian forecasting methods. The methods are illustrated with a test data set on daily maximum eight hour average ozone concentration levels observed over a study region in the Eastern United States. Forecast validations, using several moving windows, find a model developed using an approximate Gaussian predictive process to be the best and it is the only viable method for large data sets when computing speed is also taken into account. The methods are implemented in a recently developed software package, spTimer, which is a publicly available contributed R package that has wider applicability

DOI or Web link

http://www.personal.soton.ac.uk/sks/research/papers/sahubakarandwang2013.pdf